Saurabh Raje

🛛 (+1) 801-706-7032 🔰 🗷 saurabh.raje@utah.edu 📔 🏶 smr97.github.io 📔 🖸 smr97 📔 🖏 Saurabh Raje 📋 🖬 saurabhmraje

Research Statement

I am a second year PhD student studying computer science. My research is in the domain of high performance computing (HPC). Currently, I am developing compiler methods to optimise chains of sparse tensor contractions. Prior to this, I have worked on scaling up sparse tensor decomposition algorithms. Some of my previous research has been on accelerating training and inference of deep neural networks - specifically in NLP and graph-based learning. Other than hand-tuning kernels, I have also worked on domain specific languages (DSL) to generate fast code for CPUs and GPUs.

Education

University of Utah PHD IN COMPUTER SCIENCE AND ENGINEERING Advised by Prof. Saday Sadayappan Birla Institute of Technology and Science, Pilani BACHELOR OF ENGINEERING Major: Computer Science

Salt Lake City, USA Aug. 2021 - Present

Pilani, India Aug. 2015 - Dec. 2018

Publications and Patents

- [1] V. T. Chakaravarthy, A. R. Choudhury, S. Goyal, S. M. Raje, Y. Sabharwal, and A. Verma. Input ordering neural network decomposition, Mar. 24 2022. *US Patent* App. 17/026,589.
- [2] V. T. Chakaravarthy, S. S. Pandian, Raje, Saurabh, and Y. Sabharwal. On optimizing distributed non-negative tucker decomposition. In *Proceedings of the ACM International Conference on Supercomputing (ICS)*, pages 238– 249, 2019.
- [3] V. T. Chakaravarthy, S. S. Pandian, **Raje, Saurabh**, Y. Sabharwal, T. Suzumura, and S. Ubaru. Efficient scaling of dynamic graph neural networks. In *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, **SC** '21, New York, NY, USA, 2021. Association for Computing Machinery.
- [4] S. Goyal, A. R. Choudhury, Raje, Saurabh, V. Chakaravarthy, Y. Sabharwal, and A. Verma. PoWER-BERT: Accelerating BERT inference via progressive word-vector elimination. In H. D. III and A. Singh, editors, *Proceedings of* the 37th International Conference on Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages 3690–3699, Virtual, 13–18 Jul 2020. PMLR.
- [5] S. Islam, S. Balasubramaniam, P. Goyal, A. Sultana, L. Bhutani, **Raje, Saurabh**, and N. Goyal. A rapid prototyping approach for high performance density-based clustering. In *2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)*, pages 260–269. IEEE, 2019.
- [6] A. Kannan, A. Roy Choudhury, V. Saxena, Raje, Saurabh, P. Ram, A. Verma, and Y. Sabharwal. Hyperaspo: Fusion of model and hyper parameter optimization for multi-objective machine learning. In 2021 IEEE International Conference on Big Data (Big Data), pages 790–800, 2021.
- [7] S. E. Kurt, **Raje, Saurabh**, A. Sukumaran-Rajam, and P. Sadayappan. Sparsity-aware tensor decomposition. In 2022 IEEE International Parallel and Distributed Processing Symposium (**IPDPS**), pages 952–962, 2022.
- [8] S. M. Raje, S. Goyal, A. R. Choudhury, Y. Sabharwal, and A. Verma. Accelerating inference of neural network models via dynamic early exits, Nov. 10 2022. *US Patent* App. 17/307,501.
- [9] V. Saxena, A. Kannan, S. M. Raje, P. Ram, Y. Sabharwal, and A. Verma. Multi-objective automated machine learning, June 9 2022. *US Patent* App. 17/115,673.
- [10] **Raje, Saurabh**, A. Goel, S. Sharma, K. Aggarwal, D. Mantri, and T. Kumar. Development of on board computer for a nanosatellite. *68th International Astronautical Congress (IAC)*, 2017.
- [11] **Raje, Saurabh**, S. Vaderia, N. Wilson, and R. Panigrahi. Decentralised firewall for malware detection. In 2017 *International Conference on Advances in Computing, Communication and Control (ICAC3)*, pages 1–5. IEEE, 2017.

HPC Libraries openMPI, openMP, Intel TBB

[12] Y. Xu, Raje, Saurabh, A. Rountev, G. Sabin, A. Sukumaran-Rajam, and P. Sadayappan. Training of deep learning pipelines on memory-constrained gpus via segmented fused-tiled execution. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction, CC 2022, page 104–116, New York, NY, USA, 2022. Association for Computing Machinery.

Work Experience _____

University of Utah

DOCTORAL RESEARCHER

- ACCELERATING SPARSE LINEAR ALGEBRA • Currently working on new representations for sparse tensors with domain specific patterns.
- In collaboration with Pacific Northwest National labs, this research aims to accelerate quantum chemistry simulations.
- Co-developed a novel implementation for sparse-tensor decomposition (SpTL).
- SpTL reduces data movement and load imbalance to beat the state-of-the-art run-time.
- Co-developed a system to train convolutional neural networks (CNN)s on large images (20,000 x 20,000).
- This effectively tiles the dataflow through CNNs to enable processing of massive images on a single GPU system.

IBM Research

RESEARCH ENGINEER

ACCELERATING AI

- Worked with the model compression team to make AI faster.
- Designed PowerBERT, a new model that is up to 4.5x faster than BERT for inference.
- This work was published in ICML'20, and was integrated into IBM OneNLP product stack.
- Implemented a new method to train massive Graph Neural Networks faster using supercomputers (published at SC'21)
- Implemented novel representations for sparse tensors. This was used to accelerate the tucker decomposition algorithm.
- Co-invented 4 patents on model compression techniques and multiobjective optimisation.

ETH Zurich

SCIENTIFIC ASSISTANT

COMPILERS FOR DEEP LEARNING

- Accelerated the training of Deep Neural Networks using the DACE language developed in-house.
- DACE is a domain specific language for HPC workloads that uses a novel Stateful Dataflow Graph (SDFG) based Intermediate Representation.
- Wrote a Tensorflow frontend for DACE that parses a TF computation graph to build a DACE SDFG.
- Added a pattern based compiler transformation on the IR to reduce GPU kernel calls and repetitive memory access.
- Achieved at-par performance for ResNet-50 in comparison to Tensorflow and CuDNN.

INRIA

BACHELOR THESIS

MIDDLEWARE FOR PARALLEL PROGRAMMING

- Developed Kvik: a task based middleware in the Rust language.
- Kvik makes sequential code run in parallel without significant changes, by creating independent tasks.
- In particular, it provides tunable task splitting strategies that can be composed with each other.
- Wrote the fastest parallel merge sort using **Kvik** (2.5x faster than Intel TBB for 50 threads).

Honors & Awards

- Winner, Patent Plateau Award IBM India Research Lab 2021
- 2021 Winner, Outstanding Technical Achievement Award - IBM India Research Lab
- 2020 Winner, Distinguished Paper Award - IBM India Research Lab
- 2017 Winner, Mercedes Benz Hack.Banglore 2018

Rust, Python, C, C++, Java Frameworks PyTorch, Tensorflow, Caffe, CuDNN, Git

Presentations

Skills

Languages

Mobile World Congress 2018

INVITED BY DAIMLER AG TO PRESENT OUR WINNING HACKATHON PROTOTYPE

Barcelona, Spain February 2018

August 2019 - Present

Delhi, India

Zurich, Switzerland

March 2019 - August 2019

Grenoble, France

September 2018 - February 2019

SAURABH M. RAJE · CURRICULUM VITAE

Salt Lake City, Utah

August 2019 - August 2021